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a b s t r a c t

Assume that St is a stock price process and Bt is a bond price process with a constant continuously
compounded risk-free interest rate, where both are defined on an appropriate probability space P . Let
yt = log(St/St−1). yt can be generally decomposed into a conditional mean plus a noise with volatility
components, but the discounted St is not a martingale under P . Under a general framework, we obtain
a risk-neutralized measure Q under which the discounted St is a martingale in this paper. Using this
measure, we show how to derive the risk neutralized price for the derivatives. Special examples, such
as NGARCH, EGARCH and GJR pricing models, are given. Simulation study reveals that these pricing
models can capture the ‘‘volatility skew’’ of implied volatilities in the European option. A small application
highlights the importance of our model-based pricing procedure.
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1. Introduction

After the seminal work of Black and Scholes (1973) and Merton
(1973), there has been explosive growth in the trading activities
on derivatives in the worldwide financial markets. A fundamental
question in finance is how we give a fair price for the derivative,
whose payoff is on the evolution of an asset price upon which the
derivative is written. Black and Scholes (1973) first fairly valued
the option according to the principle of ‘‘the absence of arbitrage’’.
Their valuation method relies on ‘‘efficient market hypothesis’’,
under which there exists a risk-neutralized probability measure
such that the discounted asset price is a martingale, and then a
fair price of the derivative is the expected discounted value of its
future payoff under this measure. Particularly, the risk-neutralized
measure is not unique when the market is incomplete. For more
discussions on the principle of ‘‘the absence of arbitrage’’, we refer
to Harrison and Kreps (1979) and Harrison and Pliska (1981).

Although Black and Scholes’s (1973) pricing model (hereafter,
BS model) has achieved a great success in finance, it exhibits some
systematic bias. The well-documented evidence is the so-called
‘‘volatility smile’’ in Rubinstein (1985) and Sheikh (1991), from
which one may concern that the homoscedastic assumption on an
asset return (that is, the asset return follows a geometric Brownian
motion) is not reliable anymore. Thismotivates people to use other
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heteroskedastic stochastic processes to model the asset return.
The related works in this field are Cox (1975), Merton (1976),
Hull and White (1987), Stein and Stein (1991), Heston (1993), and
Xiu (2014) to name a few; see also Bates (2003) or Broadie and
Detemple (2004) for an overview in this framework.

In this paper, wemodel the asset return by a discrete stochastic
process under the physical probability measure P , which can be
decomposed into the conditional mean part plus a noise with
volatility components. In this case, the discounted asset price is
not a martingale under P . By using the method in Gerber and Shiu
(1994), we first construct a risk-neutralized Esscher measure Q ,
under which the discounted asset price is a martingale. Next, we
give the structure of our stochastic process of an asset return un-
der Q , when the conditional distribution of the innovation is nor-
mal, shift negative gamma, and shift negative inverse gaussian,
respectively. Particularly, the option pricing models in Duan
(1995), Siu et al. (2004), and Christoffersen et al. (2006) can be eas-
ily retrieved from our method. Furthermore, we propose a model-
based Monte Carlo pricing procedure and apply it to some special
examples, such as NGARCH, EGARCH and GJR pricing models. Sim-
ulation study reveals that these pricing models can capture the
‘‘volatility skew’’ of implied volatilities in the European option. A
small application highlights the importance of our model-based
pricing procedure.

The remainder of the paper is organized as follows. In Section 2,
we introduce a risk-neutralized Esscher measure Q . In Section 3,
we consider the processes for asset return underQ . Amodel-based
Monte Carlo procedure with application to some pricing models is
given in Section 4. Simulation study is reported in Section 5. A small
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application is given in Section 6. Concluding remarks are offered in
Section 7.

2. Risk-neutralized Esscher measure

Let {St : t = 0, 1, . . .} be an asset price process and Bt be
a bond price process with a constant continuously compounded
risk-free interest rate r , where both are defined on the probability
space (Ω, P,F ). Assume that the log-return of St follows a discrete
stochastic process under the physical probability measure P , i.e.,

yt = log
St

St−1
and yt = µt + ηt


ht , under P, (2.1)

where ηt |Ft−1 ∼ D(0, 1), D(0, 1) denotes some distribution F(·)
with zero mean and unit variance, and Ft is the information set
up to time t; µt ∈ Ft−1 and ht ∈ Ft−1 are the conditional
mean and the conditional variance of yt , respectively. Process (2.1)
gives us enough freedom to model the asset return, and most im-
portantly it includes the ARCH-type models originally introduced
by Engle (1982). Nowadays, the ARCH-type models are widely
used to analyze economic time series with time-varying volatil-
ity; see, e.g., Bollerslev et al. (1992), Berkes et al. (2003), and
Francq and Zakoian (2010). Since the price of the derivative is
sensitive to the volatility of its underlying asset, the ARCH-type
model which provides a good prediction on volatility is applicable
to value the derivative; see, e.g., Engle and Mustafa (1992), Duan
(1995), Ritchken and Trevor (1999), Heston and Nandi (2000),
Christoffersen and Jacobs (2004), Garcia et al. (2010), and many
others.

Next, we use themethod in Gerber and Shiu (1994) to get a risk-
neutralizedmeasure, under which the discounted process {e−rtSt :

t = 0, 1, . . .} is a martingale. First, let Mt(z) be the conditional
moment-generating function of yt , given Ft−1, i.e.,

Mt(z) = EP [ezyt |Ft−1] =


∞

−∞

ezxdF

x − µt
√
ht


. (2.2)

Second, we define a sequence of the conditional distribution
functions as follows:

Ξt(u|Ft−1) ≡ EP

I {yt ≤ u} eθt yt

Mt (θt )
|Ft−1


=

1
Mt (θt )

 u
−∞

eθt xdF


x−µt√
ht


,

where I {·} is the indicator function and θt ∈ Ft−1 be determined
subsequently. Furthermore, we define a sequence of conditional
distribution functions {Qt : t = 1, 2, . . .} on (Ω,Ft):

Qt(yi ≤ ui : i = 1, 2, . . . , t)

≡

 u1

−∞

 u2

−∞

· · ·

 ut

−∞

t
i=1

Ξi(dũi|Fi−1).

Obviously, {Qt : t = 1, 2, . . .} is consistent, i.e.,

Qt(yi ≤ ui : i = 1, 2, . . . , t)
= Qt+1(yt+1 ∈ R, yi ≤ ui : i = 1, 2, . . . , t).

By Kolmogorov extension theorem, there exists a probability Q on
(Ω,F ) such that

Q (yi ≤ ui : i = 1, 2, . . . , t) = Qt(yi ≤ ui : i = 1, 2, . . . , t),

for all t and ui, where F = σ(∪∞

i=1 Fi). Thus, we have

Q (yt ≤ u) = Qt(yt ≤ u)

=


∞

−∞

· · ·


∞

−∞

 u

−∞

t
i=1

Ξi(dũi|Fi−1)

=


∞

−∞

· · ·


∞

−∞


t−1
i=1

Ξi(dũi|Fi−1)


Ξt(u|Ft−1)

= Ξt(u|Ft−1).

Third, let M(q)
t (z) be the conditional moment-generating

function of yt under Q . By (2.2), we can show that

M(q)
t (z) = EQ


ezyt |Ft−1


=


∞

−∞

ezx
eθt x

Mt(θt)
dF

x − µt
√
ht


=

Mt(z + θt)

Mt(θt)
. (2.3)

Then, we have

EQ

e−rtSt |Ft−1


= e−r(t−1)St−1EQ


e−r+yt |Ft−1


= e−r(t−1)St−1e−rM(q)

t (1).

Thus, under Q , {e−rtSt : t = 0, 1, . . .} is a martingale iff e−rM(q)
t (1)

= 1, i.e.,

Mt(1 + θt)

Mt(θt)
= er for all t = 0, 1, . . . . (2.4)

Now, if Eq. (2.4) has a unique solution θt , the martingale
measure Q associated with this θt is called the risk-neutralized
Esscher measure. By Proposition 2.6 in Harrison and Pliska (1981),
a fair price of any derivative at current time t , denoted by Vt , can
be calculated as

Vt = EQ

e−r(T−t)W (Sj; j ≤ T )

Ft−1

, (2.5)

whereW (Sj; j ≤ T ) is the payoff of this derivative at future time T .
Note that

Sj = St exp


j

i=t+1

yi


. (2.6)

So, to calculate (2.5), it is necessary for us to consider {yt} under Q .
Finally, it is worth noting that by (2.2) and (2.4), we have

EP

er · Zt,t−1|Ft−1


= 1 and EP


eyt · Zt,t−1|Ft−1


= 1,

where Zt,t−1 = eθt yt

EP

e(1+θt )yt |Ft−1

−1. Thus, our method to
construct Q can be viewed as a special case of stochastic discount
factor (SDF) methods with SDF equals Zt,t−1. Particularly, Chorro
et al. (2012) used the SDF method to get the same martingale
measureQ as ours, and they further applied it to get the ARCH-type
optionpricingmodelwhenηt is conditional generalizedhyperbolic
distributed. For more discussions on SDF methods, we refer to
Jagannathan andWang (2001), Smith andWickens (2002),Monfort
and Pegoraro (2011), and references therein.

3. Processes for an asset return under Q

After the empirical studies in Mandelbrot (1963), Fama (1965),
Bollerslev (1987), and Bollerslev et al. (1992), the valuation of
the derivative with non-normal innovation has drawn more and
more attentions. For example, Duan (1999) and Christoffersen
et al. (2010) studied the case when the conditional innovation
is a generalized error distribution; Siu et al. (2004) explored
an option pricing model when the conditional innovation has
a gamma distribution; and Christoffersen et al. (2006) gave an
analytic pricing form when the conditional innovation has an
inverse gaussian distribution; see also Chorro et al. (2012), Xi
(2013), and references therein.

In this section, we consider the processes of an asset return
under Q when ηt is conditionally normal, shift negative gamma
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(SNG) or shift negative inverse gaussian (SNIG) distributed. When
ηt is conditionally normal distributed, we retrieve the result in
Duan (1995).When ηt is conditionally SNG or SNIG distributed, the
Gamma-GARCH process in Siu et al. (2004) or IG-GARCH process in
Christoffersen et al. (2006) can also be easily derived, respectively.
Meanwhile, it is worth noting that our method is different from
Duan’s (1999) method for dealing with a non-normal innovation
ηt . Themethod in Duan (1999) needs to transform the non-normal
innovation into another innovation which is standard normal with
a shift inmean under the local risk-neutralizedmeasure. However,
ourmethod skips that transformation and keeps the distribution of
the non-normal innovation unchanged under the risk-neutralized
Esscher measure Q . It not only seems to be more reasonable,
but avoids the cumbersome numerical problem arisen from the
transformation as shown in Duan (1999) and Christoffersen et al.
(2010).

3.1. Normal innovation

Suppose that ηt |Ft−1 ∼ N(0, 1). Then, we have

Mt(z) = exp

zµt +

z2ht

2


.

By (2.4), it follows that

θt =
1 − µt

ht
−

1
2
.

With this specified θt and relation (2.3), we have

M(q)
t (z) = exp


z

r −

ht

2


+

z2ht

2


.

Thus, under Q ,

yt = r −
ht

2
+ εt , (3.1)

where εt |Ft−1 ∼ N(0, ht). This is the same result as the one in
Duan (1995), who first obtained it under the local risk-neutralized
measure.

3.2. SNG innovation

Suppose that ηt = (ξt + at)/
√
at , where at ∈ Ft−1 is positive,

ξt |Ft−1 ∼ −G(at , 1), and G(a, b) is a random variable having the
density function

g(x) = baxa−1
[ebxΓ (a)]−1, for x ≥ 0.

In this case, we call that ηt is conditionally SNG distributed,
and denote it by ηt |Ft−1 ∼ SNG(at). Note that the conditional
skewness and kurtosis of ηt are

skew(ηt |Ft−1) = −2a−1/2
t and kurt(ηt |Ft−1) = 6a−1

t ,

respectively. Thus, by using at , we can describe the time-varying
conditional skewness or kurtosis of ηt .

When ηt |Ft−1 ∼ SNG(at), model (2.1) reduces to

yt = µt + εt under P, (3.2)

where εt =
√
atht +

√
ht/atξt . By (2.2), a direct calculation gives

us

Mt(z) =
aat/2t exp


z(µt +

√
atht)

√
at + z

√
ht
at , for z > −


at
ht
.

By (2.4), it follows that θt = bt −
√
at/ht , where

bt =


exp


µt − r +

√
atht

at


− 1

−1

.

With this specified θt and relation (2.3), if bt > 0, it follows that

M(q)
t (z) =

exp

z

µt +

√
atht


(1 + z/bt)at

, for z > −bt .

Thus, under Q ,

yt = µt + ε∗

t , (3.3)

where ε∗
t =

√
atht + ξ ∗

t with ξ ∗
t |Ft−1 ∼ −G(at , bt).

Particularly, whenµt = r+ν
√
ht −ht/2 and ht = ω+αε2t−1 +

βht−1 with ηt = (ξt − a)/
√
a and ξt |Ft−1 ∼ G(a, 1) for some

constant a > 0, by (3.2), we have under P ,
yt = r + ν


ht − ht/2 + εt ,

εt = ξt

ht/a −


aht and ht = ω + αε2t−1 + βht−1;

(3.4)

and by using the same method as for (3.3), we have under Q ,yt = r + ν

ht − ht/2 + ε∗

t ,

ε∗

t = ξ ∗

t −


aht with ξ ∗

t |Ft−1 ∼ G(a, b∗

t ),

ht = ω + α(ε∗

t−1)
2
+ βht−1,

(3.5)

where

b∗

t =


1 − exp


ν
√
ht − ht/2 −

√
aht

a

−1

.

Models (3.4)–(3.5) are the Gamma-GARCH models in Siu et al.
(2004).

3.3. SNIG innovation

Suppose that ηt = (ξt + δt)/
√
δt , where δt ∈ Ft−1 is positive,

ξt |Ft−1 ∼ −IG(δt), and IG(δ) is a random variable having the
density function

g(x) =
δ

√
2πx3

exp

−
(x − δ)2

2x


, for x > 0;

see Barndorff-Nielsen (1998). In this case, we call that ηt is
conditionally SNIG distributed, and denote it by ηt |Ft−1 ∼

SNIG(δt). As for the SNG case, the conditional skewness and
kurtosis of ηt are both time-varying in this case, and they satisfy

skew(ηt |Ft−1) = −3δ−1/2
t and kurt(ηt |Ft−1) = 15δ−1

t ,

respectively.
When ηt |Ft−1 ∼ SNIG(δt), model (2.1) reduces to

yt = µt + εt under P, (3.6)

where εt =
√
δtht +

√
ht/δtξt . Furthermore, by (2.2)–(2.4), a direct

calculation gives us

M(q)
t (z) = exp



µt +


δtht


z

+ δt


1 + 2


ht

δt
θt −

1 + 2


ht

δt
(z + θt)


 ,

where θt ∈ Ft−1 satisfies

1 + 2


ht

δt
θt =

1
4


r − µt −

√
δtht

2δt
−

2
√
δtht

r − µt −
√
δtht

2

, ct .

Thus, it follows that

yt = µt + ε∗

t underQ , (3.7)
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where ε∗
t =

√
δtht + c−1

t
√
ht/δtξ

∗
t with ξ ∗

t |Ft−1 ∼ −IG(
√
ctδt).

Particularly, whenµt = r +λht and ht = ω+αht−1 +βζt−1 +

γ h2
t−1/ζt−1 with ζt |Ft−1 ∼ IG(δt) and δt = ht/η

2 for some η > 0,
by (3.6), we have under P ,
yt = r + νht − ηζt ,

ht = ω + αht−1 + βζt−1 + γ h2
t−1/ζt−1,

(3.8)

where ν = λ+ 1/η; and by (3.7), we have under Q ,
yt = r + ν∗h∗

t − η∗ζ ∗

t ,

h∗

t = ω∗
+ αh∗

t−1 + β∗ζ ∗

t−1 + γ ∗h∗

t−1
2
/ζ ∗

t−1,
(3.9)

where ζ ∗
t |Ft−1 ∼ IG(h∗

t /η
∗2), ζ ∗

t = cζt , h∗
t = ht/c3/2, ν∗

= νc3/2,
η∗

= η/c , ω∗
= ω/c3/2, β∗

= β/c5/2, γ ∗
= γ c5/2 and c =

[1/(νη)− (νη2)/4]2. Models (3.8)–(3.9) are the IG-GARCHmodels
in Christoffersen et al. (2006).

4. Model-based pricing procedure

In this section, we give a model-based pricing procedure to
calculate Vt in (2.5). Since Vt has no closed form in general, our
pricing procedure is fulfilled by Monte Carlo method as follows:

Step 1. fit the historical data set {yi}i≤t by a specified model in
(2.1) under P;

Step 2. obtain the corresponding fitted model under Q ;
Step 3. generate a sequence of data set {yi}Ti=t+1 from the fitted

model in Step 2, and then obtain a value of vt through

vt = e−r(T−t)W (Sj; j ≤ T ),

where Sj is calculated from (2.6);
Step 4. repeat Step 3 by N times to get a sequence {v

(i)
t }

N
i=1, and

eventually approximate Vt by

Ṽt =
1
N

N
i=1

v
(i)
t .

Clearly, the value of Ṽt is model-based, because we need to
choose a specified pricing model in Step 1. For µt in (2.1), the
usual choices are the GARCH-in-mean (GIM)model in Duan (1995)
and ARMA model. For the conditional variance ht in (2.1), we can
choose it from the ARCH family or other nonlinear models as long
as ht > 0 and ht ∈ Ft−1. Some special choices are the nonlinear
NGARCH model in Engle and Ng (1993), EGARCH model in Nelson
(1991), and GJR model in Glosten et al. (1993). These three models
are to capture the ‘‘leverage effect’’ in volatility (see, e.g., Rubin-
stein (1994) and Xiu (2014)), and their practical usefulness in as-
set pricing has been verified in Schmitt (1996), Heston and Nandi
(2000), Duan and Zhang (2001), Barone-Adesi et al. (2008), and
many others.

4.1. GIM-type pricing models

In this subsection, we give three price models when µt in (2.1)
is the GIM model.

Example 4.1 (GIM-NGARCH Pricing Models). Suppose µt in (2.1)
follows a GIMmodel and ht in (2.1) follows a NGARCH(1, 1)model,
i.e., under P ,
yt = r + ν


ht − ht/2 + εt ,

εt = ηt

ht and ht = ω + α


εt−1 − θ


ht−1

2
+ βht−1,

(4.1)

where ν is the unit risk premium, ω, α > 0, β ∈ (0, 1), and
ηt |Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). Based on the historical
data set {yi}i≤t , the vector of parameters (ν, ω, α, β, θ) can be

estimated by its QMLE (ν̂, ω̂, α̂, β̂, θ̂ ) as in Francq and Zakoian
(2004). Denote the realized error and conditional variance by ε̂t
and ĥt , respectively. Note that E(η3t |Ft−1) = −2/

√
awhen ηt |Ft−1

∼ SNG(a), and E(η3t |Ft−1) = −3/
√
δ when ηt |Ft−1 ∼ SNIG(δ).

Then, by the method of moments approach, the parameters a and
δ can be estimated by â and δ̂, respectively, where

â =


2


ĥ3/2
t
ε̂3t

2

and δ̂ =


3


ĥ3/2
t
ε̂3t

2

.

Hereafter, we will use the proceeding method to obtain the esti-
mators for all models.

By (3.1), when ηt |Ft−1 ∼ N(0, 1) and under Q , model (4.1) re-
duces to

yt = r − ht/2 + ε∗

t ,

ε∗

t ∼ N(0, ht) and

ht = ω + α

ε∗

t−1 − (ν + θ)

ht−1

2
+ βht−1.

(4.2)

By (3.3), when ηt |Ft−1 ∼ SNG(a) and underQ , model (4.1) reduces
to

yt = r + ν

ht − ht/2 + ε∗

t ,

ε∗

t =


aht + ξ ∗

t with ξ ∗

t ∼ −G(a, bt),

ht = ω + α

ε∗

t−1 − θ

ht−1

2
+ βht−1,

(4.3)

where

bt =


exp


ν
√
ht − ht/2 +

√
aht

a


− 1

−1

.

By (3.7), when ηt |Ft−1 ∼ SNIG(δ) and under Q , model (4.1) re-
duces to

yt = r + ν

ht − ht/2 + ε∗

t ,

ε∗

t =


δht + c−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ
√
ct),

ht = ω + α

ε∗

t−1 − θ

ht−1

2
+ βht−1,

(4.4)

where

ct =
1
4


ht/2 − ν

√
ht −

√
δht

2δ
−

2
√
δht

ht/2 − ν
√
ht −

√
δht

2

.

Using a user-chosen initial variance ht , then we can generate the
data set {yi}Ti=t+1 in Step 3 frommodel (4.2), (4.3) or (4.4). Particu-
larly, when θ = 0, our GIM-NGARCH pricing model (4.2) reduces
to the GIM-GARCH pricing model in Duan (1995).

Example 4.2 (GIM-EGARCH Pricing Models). Suppose µt in (2.1)
follows aGIMmodel andht in (2.1) follows anEGARCH(1, 1)model,
i.e., under P ,yt = r + ν


ht − ht/2 + εt and εt = ηt


ht ,

log ht = ω + α(εt−1/

ht−1)+ θ(|εt−1/


ht−1| −


2/π)

+β log ht−1,

(4.5)

where β ∈ (−1, 1) and ηt |Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By
(3.1), (3.3) and (3.7), model (4.5) under Q reduces to

yt = r − ht/2 + ε∗

t and ε∗

t ∼ N(0, ht),

log ht = ω + α


ε∗

t−1
√
ht−1

− ν


+ θ

 ε∗

t−1
√
ht−1

− ν

−
2/π


+β log ht−1,

(4.6)
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yt = r + ν


ht − ht/2 + ε∗

t and ε∗

t =


aht + ξ ∗

t
with ξ ∗

t ∼ −G(a, bt),
log ht = ω + α(ε∗

t−1/

ht−1)+ θ(|ε∗

t−1/

ht−1| −


2/π)

+β log ht−1,

(4.7)
yt = r + ν


ht − ht/2 + ε∗

t ,

ε∗

t =


δht + c−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ
√
ct),

log ht = ω + α(ε∗

t−1/

ht−1)+ θ(|ε∗

t−1/

ht−1| −


2/π)

+β log ht−1,

(4.8)

respectively, when ηt |Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using
a user-chosen initial variance ht , then we can generate the data set
{yi}Ti=t+1 in Step 3 from model (4.6), (4.7) or (4.8).

Example 4.3 (GIM-GJR Pricing Models). Supposeµt in (2.1) follows
a GIMmodel and ht in (2.1) follows a GJR(1, 1) model, i.e., under P ,
yt = r + ν


ht − ht/2 + εt and εt = ηt


ht ,

ht = ω + αε2t−1I(εt−1 > 0)+ θε2t−1I(εt−1 ≤ 0)+ βht−1,
(4.9)

where ω, α, θ > 0, β ∈ (0, 1), and ηt |Ft−1 ∼ N(0, 1), SNG(a), or
SNIG(δ). By (3.1), (3.3) and (3.7), model (4.9) under Q reduces to

yt = r − ht/2 + ε∗

t and ε∗

t ∼ N(0, ht),

ht = ω + α(ε∗

t−1 − ν

ht−1)

2I(ε∗

t−1 > ν

ht−1)

+ θ(ε∗

t−1 − ν

ht−1)

2I(ε∗

t−1 ≤ ν

ht−1)+ βht−1,

(4.10)

yt = r + ν

ht − ht/2 + ε∗

t and ε∗

t =


aht + ξ ∗

t
with ξ ∗

t ∼ −G(a, bt),
ht = ω + αε∗2

t−1I(ε
∗

t−1 > 0)+ θε∗2
t−1I(ε

∗

t−1 ≤ 0)+ βht−1,

(4.11)yt = r + ν

ht − ht/2 + ε∗

t ,

ε∗

t =


δht + c−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ
√
ct),

ht = ω + αε∗2
t−1I(ε

∗

t−1 > 0)+ θε∗2
t−1I(ε

∗

t−1 ≤ 0)+ βht−1,

(4.12)

respectively, when ηt |Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using
a user-chosen initial variance ht , then we can generate the data set
{yi}Ti=t+1 in Step 3 from model (4.10), (4.11) or (4.12).

4.2. ARMA-type pricing models

In this subsection, we give three price models when µt in (2.1)
is the ARMA model.

Example 4.4 (ARMA-NGARCH Pricing Models). Suppose µt in
(2.1) follows an ARMA(p, q) model and ht in (2.1) follows a
NGARCH(1, 1) model, i.e., under P ,

yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiεt−i + εt and εt = ηt

ht ,

ht = ω + α

εt−1 − θ


ht−1

2
+ βht−1,

(4.13)

where ω, α > 0, β ∈ (0, 1), and ηt |Ft−1 ∼ N(0, 1), SNG(a), or
SNIG(δ). Hereafter, we assume thatΦ(z) ≠ 0 and Ψ (z) ≠ 0 when
|z| ≤ 1, and Ψ (z) and Ψ (z) have no common root with ψp ≠ 0 or
ψq ≠ 0, where Φ(z) = 1 −

p
i=1 φiz i and Ψ (z) = 1 +

q
i=1 ψiz i.

Next, by (3.1), (3.3) and (3.7), model (4.13) under Q reduces to
yt = r − ht/2 + ε∗

t and ε∗

t ∼ N(0, ht),

ht = ω + α

z∗

t−1 − θ

ht−1

2
+ βht−1,

(4.14)


yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


aht + ξ ∗

t with ξ ∗

t ∼ −G(a, b̄t),

ht = ω + α

z∗

t−1 − θ

ht−1

2
+ βht−1,

(4.15)


yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


δht + c̄−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ

c̄t),

ht = ω + α

z∗

t−1 − θ

ht−1

2
+ βht−1,

(4.16)

respectively, when ηt |Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Here,
z∗
t = Ψ (B)−1

[ε∗
t + r − ht/2 − ψ0 −

p
i=1 φiyt−i],

b̄t =


exp


µ̄∗

t − r +
√
aht

a


− 1

−1

and

c̄t =
1
4


r − µ̄∗

t −
√
δht

2δ
+

2
√
δht

r − µ̄∗
t −

√
δht

2

with µ̄∗
t = φ0 +

p
i=1 φiyt−i +

q
i=1 ψiε

∗

t−i. Using a user-chosen
initial variance ht , then we can generate the data set {yi}Ti=t+1 in
Step 3 from model (4.14), (4.15) or (4.16).

Example 4.5 (ARMA-EGARCH Pricing Models). Suppose µt in (2.1)
follows anARMA(p, q)model andht in (2.1) follows anEGARCH(1, 1)
model, i.e., under P ,

yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiεt−i + εt and εt = ηt

ht ,

log ht = ω + α(εt−1/

ht−1)+ θ(|εt−1/


ht−1| −


2/π)

+β log ht−1,

(4.17)

where β ∈ (−1, 1) and ηt |Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By
(3.1), (3.3) and (3.7), model (4.17) under Q reduces to

yt = r − ht/2 + ε∗

t and ε∗

t ∼ N(0, ht),

log ht = ω + α


z∗

t−1
√
ht−1

− ν


+ θ


|

z∗

t−1
√
ht−1

− ν| −

2/π


+β log ht−1,

(4.18)
yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


aht + ξ ∗

t with ξ ∗

t ∼ −G(a, b̄t),
log ht = ω + α(z∗

t−1/

ht−1)+ θ(|z∗

t−1/

ht−1| −


2/π)

+β log ht−1,

(4.19)
yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


δht + c̄−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ

c̄t),

log ht = ω + α(z∗

t−1/

ht−1)+ θ(|z∗

t−1/

ht−1| −


2/π)

+β log ht−1,

(4.20)

respectively, when ηt |Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using
a user-chosen initial variance ht , then we can generate the data set
{yi}Ti=t+1 in Step 3 from model (4.18), (4.19) or (4.20).

Example 4.6 (ARMA-GJR Pricing Models). Suppose µt in (2.1)
follows an ARMA(p, q) model and ht in (2.1) follows a GJR(1, 1)
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Table 1
Estimated results for all models.

ν̂ ŵ α̂ β̂ θ̂ â δ̂

GARCH 0.0595 0.4 × 10−6 0.1024 0.8855 – 2.484 × 103 5.590 × 103

NGARCH 0.0264 0.4 × 10−6 0.0932 0.8654 0.5584 1.264 × 103 2.843 × 103

EGARCH 0.0387 −0.5290 −0.0874 0.9385 0.2281 7.702 × 103 1.733 × 104

GJR 0.0289 0.3 × 10−6 0.0260 0.9061 0.1395 1.720 × 103 3.870 × 103

model, i.e., under P ,yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiεt−i + εt and εt = ηt

ht ,

ht = ω + αε2t−1I(εt−1 > 0)+ θε2t−1I(εt−1 ≤ 0)+ βht−1,

(4.21)

where ω, α, θ > 0, β ∈ (0, 1), and ηt |Ft−1 ∼ N(0, 1), SNG(a), or
SNIG(δ). By (3.1), (3.3) and (3.7), model (4.21) under Q reduces to
yt = r − ht/2 + ε∗

t and ε∗

t ∼ N(0, ht),

ht = ω + α[z∗

t−1]
2I(z∗

t−1 > 0)+ θ [z∗

t−1]
2I(z∗

t−1 ≤ 0)+ βht−1,

(4.22)
yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


aht + ξ ∗

t with ξ ∗

t ∼ −G(a, b̄t),
ht = ω + α[z∗

t−1]
2I(z∗

t−1 > 0)+ θ [z∗

t−1]
2I(z∗

t−1 ≤ 0)+ βht−1,

(4.23)
yt = φ0 +

p
i=1

φiyt−i +

q
i=1

ψiε
∗

t−i + ε∗

t ,

ε∗

t =


δht + c̄−1

t


ht/δξ

∗

t with ξ ∗

t |Ft−1 ∼ −IG(δ

c̄t),

ht = ω + α[z∗

t−1]
2I(z∗

t−1 > 0)+ θ [z∗

t−1]
2I(z∗

t−1 ≤ 0)+ βht−1,

(4.24)

respectively, when ηt |Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using
a user-chosen initial variance ht , then we can generate the data set
{yi}Ti=t+1 in Step 3 from model (4.22), (4.23) or (4.24).

5. Simulation study

In this section, we examine the finite sample performance of
our GIM-NGARCH, GIM-EGARCH, and GIM-GJR pricing models in
Section 4 and the GIM-GARCH pricing model in Duan (1995). For
brevity, we only consider European call option written on daily
Hang Seng Index (HSI). To choose the values of parameters in
GARCH, NGARCH, EGARCH, and GJR models, we fit these four
models to the log-return of a historical HSI data set, which has
a total of 1001 observations taken from January 13, 2009 to
December 31, 2012. The estimated results are reported in Table 1.
Since our major interest in this section is to see how the implied
volatility of the European call option varies according to different
models and distributions of ηt , we use these estimators for
simulations without considering model-checking. In application,
model checking should be important, and we will consider it in
Section 6.

Next, by using the parameters in Table 1, we calculate the price
of the European call option Ṽ by the Monte Carlo procedure in
Section 4 with a control-variate technique in Boyle et al. (1998).
Here, as in Duan (1995), we set the risk-free rate r = 0, the strike
price K = 1, and the repetition time M = 50,000. The moneyness
(S/K ) is from 0.8 to 1.2, the time to maturity (TM) is 30, 90 or
120 days, and the initial variance (IV) h1 is (0.8σ)2, σ 2 or (1.2σ)2,
where σ (= 0.0149) is the standard deviation of the log-return

series. As usual, the call option is out-of-the-money (OTM), at-the-
money (ATM), and in-the-money (ITM) if S/K ≪ 1, S/K ≈ 1, and
S/K ≫ 1, respectively.

As a comparison, we also consider the BS price VBS , which is
calculated by

VBS = BS(S, K , σBS, TM/365, r),

where σBS = 28.5% is the annualized volatility of the log-return
series, and

BS(S, K , σ , T , r) = S · N(d1)− Ke−rTN(d2)

is the BS price formula with

d1 =
log(S/K)+ (r + σ 2/2)T

σ
√
T

and d2 = d1 − σ
√
T .

Furthermore, we calculate the annualized implied volatility σim
according to

Ṽ = BS(S, K , σim, TM/365, r),

and then compare VBS and Ṽ in terms of σBS and σim through a
conventionalway.Moreover, Figs. 1–3 plotσim alongwith different
pricing models, distributions of ηt , TMs, and IVs. Since the results
based on SNG and SNIG innovations are similar, we only report the
results when ηt is conditionally SNIG distributed. From Figs. 1–3,
our findings are as follows:

(i) In all cases, the choice of IVwill determine the position of the
σim curves. Specifically, when IV gets large, the σim curves will shift
up. Thus, how to choose a suitable IV should be very important in
practice.

(ii) For the GIM-GARCH pricing model, the price of ITM option
based on ηt |Ft−1 ∼ N(0, 1) is significantly higher than that based
on ηt |Ft−1 ∼ SNIG(δ). However, the price based on GIM-NGARCH,
GIM-EGARCH and GIM-GJR models is less impacted by the distri-
bution of ηt .

(iii) For the GIM-GARCH pricing model with ηt |Ft−1 ∼ N(0, 1),
the relationship between VBS and Ṽ is consistent to that in Duan
(1995). For other cases, when IV is smaller, VBS is higher than Ṽ for
the OTM and ATM options, while it is smaller than Ṽ for the ITM
option; and when IV is larger, VBS is smaller than Ṽ .

(iv) For the GIM-GARCH pricing model, the U-shape of the σim
curves (i.e., ‘‘volatility smile’’) exists when ηt |Ft−1 ∼ N(0, 1),
while the U-shape of the σim curves is skew-to-left (i.e., ‘‘volatility
skew’’) when ηt |Ft−1 ∼ SNIG(δ). For other three pricing models,
the σim curves are always skew-to-left. The reason is because
except the GIM-GARCH pricing model with ηt |Ft−1 ∼ N(0, 1), all
of our pricing models can capture the ‘‘leverage effect’’, meaning
that positive returns are associatedwith decreases of volatility and
vice versa. So, the OTM option which needs larger positive returns
to end up in the money at maturity, tends to have a smaller σim.

(v) Except the GIM-GARCH pricing model with ηt |Ft−1 ∼

N(0, 1), the U-shape of each σim curve fades away as TM becomes
longer. The reason is that when TM is shorter, a big movement in
stock price is highly possible, and hence the OTM option is more
likely to become the ITM option. If this really happens, the OTM
option will produce higher return but with lower capital than ATM
or ITM option. Therefore, the speculators in the market will buy
OTM options to take advantage of the potential big movement in
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Fig. 1. Annualized implied volatility for TM = 30 under GIM-GARCHmodel (solid line), GIM-NGARCHmodel (dashed line), GIM-EGARCHmodel (dotted line), and GIM-GJR
model (dot-dashed line).

stock price, and consequently, thiswill cause the higher σim in OTM
options.When TMbecomes longer, the possibility of extreme stock
movement tends to be smaller, and eventually it will cause the
vanish of the upwards movement of σim in OTM options.

Overall, our pricing models can capture the ‘‘volatility skew’’
phenomenon in the market and should be useful in practice.

6. Application

In this section, we assess the performance of six different
pricing models (see Table 3) by comparing our model-based prices

with the real market prices. For brevity, we only consider the
traded European S&P 500 call option data on April 18, 2002. This
data set from Schoutens (2003) includes a total number of 53 call
options with TM = 22, 46, 109, 173 or 234 days and K ranging
from 975 to 1325; see Table 2 for more details. The closing price
S0 is 1124.47. The annual risk-free interest rate r is 1.9%, and the
dividend yield d is 1.2%. So, the annual effective interest rate r0
is 0.7% in all calculations. The parameters of all pricing models
are estimated using the log-return of daily closing price of S&P
500 from January 04, 1988 to April 17, 2002 (a total of 3606
observations), and their results are reported in Table 3. To check the
model adequacy, the p-values of the Ljung and Box tests Q (M) and
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Fig. 2. Annualized implied volatility for TM = 90 under GIM-GARCHmodel (solid line), GIM-NGARCHmodel (dashed line), GIM-EGARCHmodel (dotted line), and GIM-GJR
model (dot-dashed line).

Li and Mak tests Q 2(M) are also reported in the same table. From
Table 3, we find that all of ARMA-type models are adequate to fit
this log-return series, while all of GIM-typemodels are inadequate
to fit the conditional mean of this log-return series.

Next, we calculate the model-based prices of those call options
in Table 2, and use the average relative error (ARE) criterion to
measure the performances of our model-based prices, where

ARE =
1
N

N
j=1

Vmodel
j − Vmarket

j


Vmarket
j

× 100,

and N is the total number of options considered, Vmarket
j is the

market price of jth option, and Vmodel
j is the model-based price of

jth option. For each pricing model, since Vmodel
j depends on the

choice of IV h1, we choose h1 to be (κσe)2, whereσe is the estimated
volatility of the last day of the log-return series, and κ is taken as
follows:

κ = min
κ0∈{0.1,0.2,...,2.0}

ARE(κ0),
where ARE(κ0) is the ARE of this pricing model with h1 = (κ0σe)

2

and ηt |Ft−1 ∼ N(0, 1). Based on this choice of IV, Table 4
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Fig. 3. Annualized implied volatility for TM = 120 under GIM-GARCHmodel (solid line), GIM-NGARCHmodel (dashed line), GIM-EGARCHmodel (dotted line), and GIM-GJR
model (dot-dashed line).

reports the detailed results of ARE along with different models,
distributions of ηt , and TMs. From Table 4, we find that (i) except
the GIM-GJR model with ηt |Ft−1 ∼ SNIG(δ), each pricing model
with non-normal innovation has a smaller ARE than that with
normal innovation, even κ is optimally chosen for the normal
innovation; (ii) the performance of each pricing model becomes
worse when the value of TM increases; (iii) for each pricing model,
the performance of two non-normal cases is comparative; (iv)
the performance of the GIM-type pricing models and ARMA-type
pricingmodels is also comparative, and although the GIM-EGARCH
pricing model is inadequate, the GIM-EGARCH pricing model with
ηt |Ft−1 ∼ SNIG(δ) has the best performance; see Fig. 4 for the

plot of difference of model-based prices and market prices in this
case. Overall, all of our pricing models have a good performance
no matter of model-adequacy and they are much better than the
BS pricing formula and Duan’s standard GARCH(1,1) model with
ηt |Ft−1 ∼ N(0, 1). Our best ARE is 2.22 less than 2.36, which is the
best ARE based on the ESS-TGARCH-M pricing model in Xi (2013).

7. Concluding remarks

In this paper, we construct a risk-neutralized Esscher measure
for the asset return which can be decomposed into the conditional
mean plus a noise with time-varying volatility components under
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Table 2
Market prices of all traded S&P 500 call options on April 18, 2002.

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.6 173.3
995 144.8 157

1025 120.1 133.1 146.5
1075 84.5 100.7 114.8
1090 43.1
1100 35.6 65.5 81.2
1110 39.5
1120 22.9 33.5
1125 20.2 30.7 51 66.9 81.7
1130 28
1135 25.6 45.5
1140 13.3 23.2 58.9
1150 19.1 38.1 53.9 68.3
1160 15.3
1170 12.1
1175 10.9 27.7 42.5 56.6
1200 19.6 33 46.1
1225 13.2 24.9 36.9
1250 18.3 29.3
1275 13.2 22.5
1300 17.2
1325 12.8

a physical probability measure P . Using this risk-neutralized
measure, six ARCH-type model-based pricing procedures are
proposed to value the derivatives. Simulation studies show that
our pricing models can capture the ‘‘volatility skew’’ of implied
volatilities in the European option. A small application to the S&P

Fig. 4. The values of Vmodel
−Vmarket based on the GIM-EGARCH pricingmodel with

ηt |Ft−1 ∼ SNIG(δ).

500 option highlights the importance of our model-based pricing
procedure with non-normal innovations. As the empirical studies
suggested, the performance of our pricing procedure varies in
terms of IV, TM, and the distribution of innovation. Hence, two
promising directions for future study are (i) choosing an ‘‘optimal’’
IV by the range of TM in some sense, and (ii) estimating the
distribution of innovation non-parametrically.

Table 3
Estimators for all pricing models.

Models Estimators Q (6) Q (12) Q 2(6) Q 2(12)a

GIM-NGARCH ν̂ = 0.0393, ω̂ = 6.6 × 10−6, α̂ = 0.1360, β̂ = 0.7668, θ̂ = 0.5505, 0.0065 0.0038 0.2830 0.7527
â = 42.6, δ̂ = 95.9

GIM-EGARCH ν̂ = 0.0445, ω̂ = −0.4846, α̂ = −0.1162, β̂ = 0.9480, θ̂ = 0.1704, 0.0185 0.0073 0.9122 0.9920
â = 4482.0, δ̂ = 1.008 × 104

GIM-GJR ν̂ = 0.0498, ω̂ = 8.0 × 10−6, α̂ = 0.0670, β̂ = 0.7772, θ̂ = 0.2240, 0.0300 0.0116 0.9174 0.9959
â = 37.6, δ̂ = 84.7

AR(3)-NGARCH φ̂0 = 0.0001, φ̂1 = 0.0431, φ̂2 = −0.0021, φ̂3 = −0.0412, ω̂ = 6.7 × 10−6, 0.5562 0.1833 0.2998 0.7764
α̂ = 0.1382, β̂ = 0.7623, θ̂ = 0.5809, â = 77.9, δ̂ = 175.3

AR(3)-EGARCH φ̂0 = 0.0002, φ̂1 = 0.0430, φ̂2 = 0.0174, φ̂3 = −0.0245, ω̂ = −0.4789, 0.4608 0.1512 0.9328 0.9935
α̂ = −0.1210, β̂ = 0.9484, θ̂ = 0.1727, â = 2.8 × 106, δ̂ = 6.4 × 106

AR(3)-GJR φ̂0 = 0.0002, φ̂1 = 0.0383, φ̂2 = −0.0013, φ̂3 = −0.0457, ω̂ = 8.3 × 10−6, 0.5398 0.1583 0.6446 0.9538
α̂ = 0.0657, β̂ = 0.7739, θ̂ = 0.2316, â = 59.8, δ̂ = 134.5

a p-values of Ljung–Box test statistics Q (M) and Li–Mak test statistics Q 2(M).

Table 4
The values of ARE for all pricing models.

Models IV ηt |Ft−1 ∼ N(0, 1) ηt |Ft−1 ∼ SNG(a) ηt |Ft−1 ∼ SNIG(δ)
TM TM TM

κ 22 46 109 173 234 Alla 22 46 109 173 234 All 22 46 109 173 234 All

GIM-NGARCH 0.7 1.40 0.83 2.34 4.77 6.39 3.31 1.60 1.07 1.32 2.94 4.87 2.39 1.74 0.78 2.47 3.65 5.50 2.90
GIM-EGARCH 0.8 0.75 1.30 2.74 5.20 7.42 3.76 0.80 1.23 3.00 4.67 6.87 3.56 2.21 1.03 1.19 2.59 4.35 2.22
GIM-GJR 0.7 1.76 1.54 3.36 5.46 6.71 3.98 0.72 1.69 2.71 4.51 6.61 3.50 1.62 3.61 3.62 5.48 8.58 4.86

AR(3)-NGARCH 0.7 1.17 0.85 2.48 4.09 6.12 3.10 2.35 1.79 1.41 3.41 4.86 2.77 1.51 0.91 1.76 3.40 4.80 2.55
AR(3)-EGARCH 0.9 4.93 1.84 4.03 6.75 11.24 5.70 2.08 2.04 2.51 4.62 7.00 3.77 7.15 5.73 1.94 2.75 4.51 3.92
AR(3)-GJR 0.7 1.77 1.78 3.82 5.90 7.23 4.36 0.62 0.98 2.86 4.59 6.03 3.28 1.19 2.04 2.60 4.12 5.92 3.37

Benchmarksb IV TM
κ 22 46 109 173 234 All

BS 1.0 2.53 3.93 5.95 8.28 10.09 6.57
GIM-GARCH 0.6 6.42 4.34 5.26 7.79 10.42 6.80
a The ARE is based on all options, and the smallest ARE is in bold.
b The ARE of BS pricing model and GIM-GARCH pricing model with ηt |Ft−1 ∼ N(0, 1) is calculated with IV = (κσBS)

2 and (κσe)2 , respectively. Here, σBS is the annualized
volatility of the log-return series.
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